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1 Introduction

In the past decade, optimal reinsurance and optimal investment problems for various risk models
have gained a lot of interest in the actuarial literature, and the technique of stochastic control
theory and the corresponding Hamilton-Jacobi-Bellman equation are frequently used to cope with
these problems. See, for example, Schmidli (2001), Irgens and Paulsen (2004), Promislow and
Young (2005), Liang et al. (2011), and Liang and Bayraktar (2014). The main popular criteria
include maximizing the expected utility of the terminal wealth, minimizing the ruin probability of
the insurer, and so on.

Mean-variance criterion, as another one of the popular criteria proposed by Markowitz (1952),
has become one of the milestone in mathematical finance. In Markowitz (1952), the author was to
seek a best allocation among a number of (risky) assets in order to achieve the optimal trade-off
between the expected return and its risk (say, variance) over a fixed time horizon. From then on,
mean-variance criterion becomes a rather popular criterion to measure the risk in finance theory.
By now there exist numerous papers on the mean-variance problem and its extension in finance. See
for example, Li and Ng (2000) developed an embedding technique to change the originally mean-
variance problem into a stochastic linear-quadratic (LQ) control problem in a discrete-time setting.
This technique was extended in Zhou and Li (2000), along with an indefinite stochastic LQ control
approach, to the continuous time case. Before 2005, all the applications with mean-variance criterion
focus on classical financial portfolio allocation problems. Bäuerle (2005) first pointed out that mean-
variance criterion could also be of interest in insurance application, and then he studied the optimal
reinsurance strategy problem for the classical compound Poisson insurance risk model. Under the
mean-variance framework, by using the stochastic LQ control theory, the explicit solutions of the
efficient strategy and efficient frontier are given. Further extensions and improvements in insurance
applications were carried out. See for example, Bi and Guo (2013) considered the optimal reinsurance
and optimal investment with a jump-diffusion risky asset for the compound Poisson risk model, by
the technique of viscosity solution, the efficient frontier and efficient strategy were obtained; Ming
and Liang (2014) studied the optimal reinsurance for the compound Poisson risk model with common
shock dependence, and the optimal results were also derived.

Most of the literature about investment optimization is based on the assumption that the price of
the stock follows a diffusion-type process, in particular a geometric Brownian motion. But in the real
financial market, information often comes as a surprise, this usually leads to a jump in the price of
stock. Therefore, in a jump-diffusion model the stock’s price may jump to a new level and then follow
a geometric Brownian motion. Besides, the published papers with jump-diffusion risky asset always
have some constraints on the jump sizes. See, for example, Alvarez E et al. (2014) only considered
the negative shocks, i.e., download jumps to study the optimal stopping problems; while Bi and Guo
(2013) assumed that the expected value of the jump size in the stock market is nonnegative. In this
paper, we remove all these constraints mentioned above, and allow the expected value of jump sizes
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to be negative as well as positive, which is more economic reasonable in the real financial market,
and thus we have to discuss the optimization problem within five different cases. Moreover, we
assume that the aggregate claim and the stock price are correlated by a common shock. This kind of
model assumes that there exists a common shock affecting the stock market as well as the insurance
market. In reality, a common component can depict the effect of a natural disaster which causes
various kinds of risk including the one in financial market. It generalizes the model of Bi and Guo
(2013) from the independent financial market to the case where aggregate claim process and risky
asset process are correlated by a common shock. Under the mean-variance criterion, based on the
framework of stochastic LQ control theory and the corresponding Hamilton-Jacobi-Bellman (HJB)
equation, we derive the explicit expressions of the optimal strategies and value function, which is
the viscosity solution of the HJB equation. Furthermore, we extend the results in the LQ-setting to
the original mean-variance problem, and obtain the explicit solutions of the efficient strategy and
efficient frontier.

The rest of the paper is organized as follows. In Section 2, the model and the mean-variance
problem are presented. The main results and the explicit expressions for the optimal values are
derived in Sections 3. In Section 4, we extend the optimal results in the LQ-setting to the original
mean-variance problem, and obtain the solutions of the efficient strategy and efficient frontier ex-
plicitly. Some numerical examples are shown to illustrate the impact of some model parameters on
the efficient frontier in Section 5, and Section 6 concludes the paper.

2 Model and problem formulation

Let (Ω,F , P ) be a probability space with filtration {Ft} containing all objects defined in the follow-
ing.

We consider the financial market where the assets are traded continuously on a finite time hori-
zon [0, T ]. There are a risk-free asset (bond) and a risky asset (stock) in the financial market. The
price of the bond is given by

{
dB(t) = r(t)B(t)dt, t ∈ [0, T ],

B(0) = 1,

where r(t)(> 0) is the interest rate of the bond.
The price of the stock is modeled by the following jump-diffusion process





dS(t) = S(t−)


b(t)dt + σ(t)dW (t) + d

K2(t)∑

i=1

Yi


 , t ∈ [0, T ],

S(0) = S0,

(1)
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where S0 is the deterministic initial price, b(t)(> r(t)) is the appreciation rate and σ(t) > 0 is the
volatility coefficient. We denote a(t) := b(t)− r(t) > 0. {W (t)}t≥0 is a standard {Ft}t≥0−adapted
Brownian motion. We assume that r(t), b(t) and σ(t) are deterministic, Borel-measurable and
bounded on [0, T ]. {K2(t)}t≥0 is a Poisson process with intensity parameter λ2 + λ > 0. The jump
sizes {Yi, i ≥ 1} are assumed to be an i.i.d. sequence with values in (−1,+∞), the assumption that
Yi > −1 leads always to positive values of the stock prices. Y is a generic random variable which
has the same distribution as Yi, i ≥ 1. Let FY (·) denote the cumulative distribution function of Y .
We assume that E(Y ) = µ21 and E(Y 2) = µ22. {W (t)}t≥0, {K2(t)}t≥0 and {Yi, i ≥ 1} are mutually
independent.

The diffusion component in equation (1) characterizes the normal fluctuation in the stock’s
price, due to gradual changes in economic conditions or the arrival of new information which causes
marginal changes in the stock’s price. The jump component describes the sudden changes in the
stock’s price due to the arrival of important new information which has a large effect on the stock’s
price. By stochastic differential equation (SDE) theory, a unique solution exists for SDE (1).

The risk process {U(t)}t≥0 of the insurer is modeled by

dU(t) = cdt− d

K1(t)∑

i=1

Xi, U(0) = U0, (2)

where U0 is the deterministic initial reserve of the insurer and the constant c is the premium rate.
{K1(t)}t≥0 is a Poisson process with intensity λ1 + λ > 0 which represents the number of claims
occurring in time interval [0, t]. Xi is the size of the ith claim and {Xi, i ≥ 1} are assumed to be
an i.i.d. sequence and independent of {K1(t)}t≥0. Thus the compound Poisson process

∑K1(t)
i=1 Xi

represents the cumulative amount of claims in time interval [0, t]. X is a generic random variable
which has the same distribution as Xi, i ≥ 1. Let FX(·) denote the cumulative distribution function
of X. The expectation of X is EX = µ11 > 0 and the second moment of X is E(X2) = µ12 > 0.
The risk process defined in equation (2), from the perspective of the insurer, is really a pay-off
process associated with the (insurance) contracts he (or she) has entered. The two number processes
{K1(t)}t≥0 and {K2(t)}t≥0 are correlated in the way that

K1(t) = N1(t) + N(t) and K2(t) = N2(t) + N(t),

with N1(t), N2(t), and N(t) being three independent Poisson processes with parameters λ1, λ2, and
λ, respectively. It is obvious that the dependence between the financial risky asset and the aggre-
gate claim processes is due to a common shock governed by the counting process N(t). Moreover,
{W (t)}t≥0, {N1(t)}t≥0, {Xi, i ≥ 1}, {N2(t)}t≥0, {Yi, i ≥ 1} and {N(t)}t≥0 are mutually indepen-
dent.

We assume that, at time t, the insurer is allowed to invest all of his (or her) wealth R(t) into the
financial market. Let ξ(t) and η(t) denote the total market value of the agent’s wealth in the bond

4



and stock, respectively, and ξ(t) + η(t) = R(t). An important restrict we will consider in this paper
is the prohibition of short-selling of the stock, i.e., η(t) ≥ 0. But ξ(t) is not constrained. We assume
that the insurer can purchase new business in addition to investment. Let q(t)(≥ 0) represents the
retention level of new business acquired at time t. It means that the insurer pays q(t)X of a claim
occurring at time t and the new businessman pays (1 − q(t))X. For this business, the premium
has to be paid at rate δ(q(t)) = (1 + θ)(1 − q(t))a1 with a1 = (λ1 + λ)µ11, where θ is the safety
loading for the new business. Note that for the insurance company, q(t) ∈ [0, 1] corresponds to a
reinsurance cover and q(t) > 1 would mean that the company can take an extra insurance business
from other companies (i.e., act as a reinsurer for other cedents). A strategy π(t) = (η(t), q(t)) is
said to be admissible if η(t) and q(t) are Ft-predictable processes, and satisfy η(t) ≥ 0, q(t) ≥ 0,
E[

∫ t

0
(η(s))2ds] < ∞ and E[

∫ t

0
(q(s))2ds] < ∞ for all t ≥ 0. We denote the set of all admissible

strategies by Π. Then the resulting surplus process R(t) is given by




dR(t) = [r(t)R(t−) + a(t)η(t) + c− δ(q(t))] dt + η(t)σ(t)dW (t)

+ η(t)d
K2(t)∑

i=1

Yi − q(t)d
K1(t)∑

i=1

Xi

R(0) = R0.

(3)

Corresponding to an admissible trading strategy π(·) and a deterministic initial capital R0, there
exists a unique R(·) satisfies (3).

Let Rπ(T ) denote the terminal wealth when the strategy π(·) is applied. Then the mean-variance
problem is to maximize the expected terminal wealth E[Rπ(T )] and, in the meantime, to minimize
the variance of the terminal wealth Var[Rπ(T )] over π(·) ∈ Π. This is a multi-objective optimization
problem with two conflicting criteria, which can be formulated as follows:

min (J1(π(·)), J2(π(·))) := (Var[Rπ(T )],−E[Rπ(T )])

subject to

{
π ∈ Π

(R(·), π(·)) satisfy (3).

(4)

Definition 2.1. For the multi-objective optimization problem (4), an admissible strategy π∗(·) is
called an efficient strategy if there exists no admissible portfolio π(·) ∈ Π such that

J1(π(·)) ≤ J1(π∗(·)), J2(π(·)) ≤ J2(π∗(·))

with at least one of the inequalities holding strictly. In this case, (J1(π∗(·)),−J2(π∗(·))) ∈ R2 is
called an efficient point. The set of all efficient points is called the efficient frontier.

We firstly consider the problem of finding an admissible strategy such that the expected terminal
wealth satisfies ERπ(T ) = k, where k is a constant, while the risk measured by the variance of the
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terminal wealth

Var[Rπ(T )] = E {Rπ(T )− E[Rπ(T )]}2 = E
{
[Rπ(T )− k]2

}

is minimized. This variance minimizing problem can be formulated as the following optimization
problem

min Var[Rπ(T )] = E[Rπ(T )− k]2

subject to





ERπ(T ) = k

π ∈ Π

(R(·), π(·)) satisfy (3).

(5)

Definition 2.2. For the variance minimizing problem (5), the optimal strategy π∗(·) (corresponding
to a fixed k) is called a variance minimizing strategy, and the set of all points (Var[Rπ∗(T )], k),
where Var[Rπ∗(T )] denotes the optimal value of (5) corresponding to a fixed k, is called the variance
minimizing frontier.

An efficient strategy is one for which there does not exist another strategy that has higher mean
and no higher variance, and/or has lower variance and no lower mean at the terminal time T . In
other words, an efficient strategy is one that is Pareto optimal. By Definition 2.1 and Definition 2.2,
we know that the efficient frontier is a subset of the variance minimizing frontier. In the following
context, we will discuss the variance minimizing problem firstly.

Since (5) is a convex optimization problem, the constraint ERπ(T ) = k can be dealt with by
introducing a Lagrange multiplier β ∈ R. In this way, problem (5) can be solved via the following
optimal stochastic control problem (for every fixed β)

min E
{
[Rπ(T )− k]2 + 2β[ERπ(T )− k]

}
,

subject to

{
π ∈ Π

(R(·), π(·)) satisfy (3),

(6)

where the factor 2 in the front of β is introduced in the objective function just for convenience.
After solving problem (6), to obtain the optimal value and optimal strategy for problem (5), we
need to maximize the optimal value in (6) over β ∈ R according to Lagrange duality theorem (see
Luenberger (1968)). Clearly, problem (6) is equivalent to

min E
{
[Rπ(T )− (k − β)]2

}
,

subject to

{
π ∈ Π

(R(·), π(·)) satisfy (3),

(7)

in the sense that the two problems have exactly the same optimal control for fixed β. For simplicity,
we omit the superscript π of Rπ(·) from now on.
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3 The HJB equation and optimal results

We firstly solve an auxiliary LQ problem. Consider the following controlled linear stochastic differ-
ential equation





dR̂(t) = [r(t)R̂(t−) + a(t)η(t) + c(t)− δ(q(t))]dt + η(t)σ(t)dW (t)

+ η(t)d
K2(t)∑

i=1

Yi − q(t)d
K1(t)∑

i=1

Xi

R̂(0) = R̂0,

(8)

and the problem

min E

{
1
2
[R̂(T )]2

}
,

subject to

{
π ∈ Π

(R̂(·), π(·)) satisfy (8),

(9)

where r(t), a(t), c(t) and σ(t) are deterministic, Borel-measurable functions and bounded on [0, T ].
Note that if we set R̂(t) = R(t)− (k − β), then R(t) = R̂(t) + (k − β), R(0) = R̂(0) + (k − β), and
c(t) = c + (k − β)r(t) in (8), we can get (3) from (8). So we solve the auxiliary LQ problem (8)-(9)
firstly.

We define the associated value function by

J(t, x) := inf
π∈Π

E

{
1
2
[R̂(T )]2

∣∣R̂(t) = x

}
.

This is a stochastic LQ problem, in which the two controls are constrained to take nonnegative
values. In the following, we will solve this problem with the help of the HJB equation.

According to Fleming and Soner (1993), the corresponding HJB equation of problem (8)-(9) is
the following partial differential equation





inf
π

{
Vt(t, x) + [r(t)x + a(t)η + c(t)− δ(q)]Vx(t, x) +

1
2
σ(t)2η2Vxx(t, x)

+ λ2E[V (t, x + ηY )− V (t, x)] + λ1E[V (t, x− qX)− V (t, x)]

+ λE[V (t, x + ηY − qX)− V (t, x)]
}

= 0

V (T, x) =
1
2
x2.

(10)

Here Vt(t, x), Vx(t, x) mean the partial derivatives of V (t, x). For function f(t, x), let C1,2([0, T ]×R)
denote the space of f(t, x) such that f and its partial derivatives ft, fx, fxx are continuous on
[0, T ]× R. If the optimal value function J(·, ·) ∈ C1,2([0, T ]× R), it will satisfy equation (10). But
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in most of the examples this is not the case, so we study the viscosity solutions of equation (10).
Next we will give the definition of viscosity solution according to Fleming and Soner (1993).

Definition 3.1. Let V ∈ C([0, T ]× R), which consists of functions continuous on [0, T ]× R.

(1) We say V is a viscosity subsolution of (10) in (t, x) ∈ [0, T ]×R, if for each ϕ ∈ C1,2([0, T ]×R),

inf
η≥0,q≥0

{
ϕt(t̄, x̄) + ϕx(t̄, x̄)[r(t̄)x̄ + (b(t̄)− r(t̄))η + c(t)− δ(q)] +

1
2
ϕxx(t̄, x̄)σ(t̄)2η2

+ λ2E[ϕ(t̄, x̄ + ηY )− ϕ(t̄, x̄)] + λ1E[ϕ(t̄, x̄− qX)− ϕ(t̄, x̄)]

+ λE[ϕ(t̄, x̄ + ηY − qX)− ϕ(t̄, x̄)]
}
≥0

at every (t̄, x̄) ∈ [0, T ]×R which is a maximizer of V − ϕ on [0, T ]×R with V (t̄, x̄) = ϕ(t̄, x̄).

(2) We say V is a viscosity supersolution of (10) in (t, x) ∈ [0, T ]×R, if for each ϕ ∈ C1,2([0, T ]×
R),

inf
η≥0,q≥0

{
ϕt(t̄, x̄) + ϕx(t̄, x̄)[r(t̄)x̄ + (b(t̄)− r(t̄))η + c(t)− δ(q)] +

1
2
ϕxx(t̄, x̄)σ(t̄)2η2

+ λ2E[ϕ(t̄, x̄ + ηY )− ϕ(t̄, x̄)] + λ1E[ϕ(t̄, x̄− qX)− ϕ(t̄, x̄)]

+ λE[ϕ(t̄, x̄ + ηY − qX)− ϕ(t̄, x̄)]
}
≤0

at every (t̄, x̄) ∈ [0, T ]×R which is a minimizer of V − ϕ on [0, T ]×R with V (t̄, x̄) = ϕ(t̄, x̄).

(3) We say V is a viscosity solution of (10) in (t, x) ∈ [0, T ]×R, if it is both a viscosity subsolution
and a viscosity supersolution of (10) in (t, x) ∈ [0, T ]× R.

In the following context, we will give a detail analysis for the continuously differentiable viscosity
solution to the HJB equation (10).

Suppose that the HJB equation (10) has a solution which has the following form

V (t, x) =
1
2
P (t)x2 + Q(t)x + L(t). (11)

The boundary condition in (10) implies that P (T ) = 1, Q(T ) = 0, and L(T ) = 0. Inserting the
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trivial solution (11) into (10) and rearranging yields

inf
π

{
(ηa(t) + (1 + θ)a1q)(P (t)x + Q(t)) +

1
2
P (t)σ(t)2η2

+ λ1

[
−(P (t)x + Q(t))qµ11 +

1
2
P (t)q2µ12

]
+ λ2

[
(P (t)x + Q(t))ηµ21 +

1
2
P (t)η2µ22

]

+ λ(P (t)x + Q(t))(ηµ21 − qµ11) +
1
2
P (t)λ(η2µ22 − 2ηqµ11µ21 + q2µ12)

}

+
1
2
Pt(t)x2 + Qt(t)x + Lt(t) + (r(t)x + c(t)− (1 + θ)a1)(P (t)x + Q(t)) = 0.

(12)

Let

f(η, q) = [ηa(t) + (1 + θ)a1q] (P (t)x + Q(t)) +
1
2
P (t)σ(t)2η2

+ λ1

[
−(P (t)x + Q(t))qµ11 +

1
2
P (t)q2µ12

]
+ λ2

[
(P (t)x + Q(t))ηµ21 +

1
2
P (t)η2µ22

]

+ λ(P (t)x + Q(t))(ηµ21 − qµ11) +
1
2
P (t)λ(η2µ22 − 2ηqµ11µ21 + q2µ12).

We have




∂f
∂η =

[
(σ2(t) + (λ2 + λ)µ22)η − λµ11µ21q

]
P (t) + (P (t)x + Q(t))(a(t) + (λ2 + λ)µ21),

∂f
∂q = [(λ1 + λ)µ12q − λµ11µ21η)]P (t) + (P (t)x + Q(t))θa1,

∂2f
∂η2 =

[
σ2(t) + (λ2 + λ)µ22

]
P (t),

∂2f
∂q2 = (λ1 + λ)P (t)µ12,

∂2f
∂η∂q = ∂2f

∂q∂η = −λP (t)µ11µ21.

Let

A =




P (t)(σ2(t) + λ2µ22) 0

0 P (t)λ1µ12


 , B =




P (t)µ22 −P (t)µ11µ21

−P (t)µ11µ21 P (t)µ12


 .

Then, the Hessian matrix of f(η, q) can be decomposed as




∂2f(η,q)
∂η2

∂2f(η,q)
∂η∂q

∂2f(η,q)
∂q∂η

∂2f(η,q)
∂q2


 = A + λ ·B.

It is easy to see that A is a positive definite matrix. Furthermore, by the Cauchy−Schwarz inequal-
ity, it is not difficult to prove that B is a nonnegative definite matrix, and thus, the Hessian matrix
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is a positive definite matrix. Therefore, the minimizer (η, q) of f(η, q) satisfies the following equations





[
(σ2(t) + (λ2 + λ)µ22)η − λµ11µ21q

]
P (t) + (P (t)x + Q(t)) [a(t) + (λ2 + λ)µ21] = 0,

[(λ1 + λ)µ12q − λµ11µ21η]P (t) + (P (t)x + Q(t))θa1 = 0.
(13)

Solving the equations (13) gives





η̌ = ∆1(t)(x + Q(t)
P (t) ),

q̌ = ∆2(t)(x + Q(t)
P (t) ),

(14)

where 



∆1(t) = − (a(t)+(λ2+λ)µ21)(λ1+λ)µ12+θa1λµ11µ21
(σ2(t)+(λ2+λ)µ22)(λ1+λ)µ12−λ2µ2

11µ2
21

,

∆2(t) = − (a(t)+(λ2+λ)µ21)λµ11µ21+θa1(σ
2(t)+(λ2+λ)µ22)

(σ2(t)+(λ2+λ)µ22)(λ1+λ)µ12−λ2µ2
11µ2

21
.

(15)

Let
θ1(t) = − (a(t)+(λ2+λ)µ21)(λ1+λ)µ12

a1λµ11µ21
,

θ2(t) = − (a(t)+(λ2+λ)µ21)λµ11µ21
a1(σ2(t)+(λ2+λ)µ22)

.

Before we discuss the optimal strategies based on the constraints of (η, q), we first give the following
lemma which plays a key role in this paper.

Lemma 3.1. For any 0 ≤ t ≤ T , when − a(t)
λ2+λ < µ21 < 0, we have 0 < θ2(t) < θ1(t); when

−1 < µ21 < − a(t)
λ2+λ or µ21 > 0, we have θ1(t) < θ2(t) < 0.

Proof: By the Cauchy−Schwarz inequality, it is not difficult to see that

(σ2(t) + (λ2 + λ)µ22)(λ1 + λ)µ12 > λ2µ2
11µ

2
21.

When − a(t)
λ2+λ < µ21 < 0, we have a(t) + (λ2 + λ)µ21 > 0, and thus

(σ2(t) + (λ2 + λ)µ22)(λ1 + λ)µ12 > λ2µ2
11µ

2
21

⇔ (σ2(t) + (λ2 + λ)µ22)(λ1 + λ)µ12(a(t) + (λ2 + λ)µ21) > λ2µ2
11µ

2
21(a(t) + (λ2 + λ)µ21)

⇔ (a(t)+(λ2+λ)µ21)(λ1+λ)µ12
a1λµ11µ21

< (a(t)+(λ2+λ)µ21)λµ11µ21
a1(σ2(t)+(λ2+λ)µ22)

⇔ − (a(t)+(λ2+λ)µ21)(λ1+λ)µ12
a1λµ11µ21

> − (a(t)+(λ2+λ)µ21)λµ11µ21
a1(σ2(t)+(λ2+λ)µ22)

,

which proves that θ2(t) < θ1(t).
Along the same lines, we can prove the results for the cases of −1 < µ21 < − a(t)

λ2+λ and µ21 > 0. ¤

From (15), it is easy to see that ∆1(t) > 0 and ∆2(t) < 0 for µ21 = − a(t)
λ2+λ ; ∆1(t) < 0 and

∆2(t) < 0 for µ21 = 0. Therefore, based on the results of Lemma 3.1, we will discuss the optimal
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results from the following five cases:
Case 1: − a(t)

λ2+λ < µ21 < 0, 0 < θ ≤ θ2(t) < θ1(t) (i.e., ∆1(t) < 0, ∆2(t) ≥ 0),

Case 2: − a(t)
λ2+λ < µ21 < 0, 0 < θ2(t) < θ ≤ θ1(t) (i.e., ∆1(t) ≤ 0, ∆2(t) < 0),

Case 3: − a(t)
λ2+λ < µ21 < 0, 0 < θ2(t) < θ1(t) < θ (i.e., ∆1(t) > 0, ∆2(t) < 0),

Case 4: −1 < µ21 ≤ − a(t)
λ2+λ , θ > 0 (i.e., ∆1(t) > 0, ∆2(t) < 0),

Case 5: µ21 ≥ 0, θ > 0 (i.e., ∆1(t) < 0, ∆2(t) < 0).

Remark 3.1. When − a(t)
λ2+λ < −1, inequality − a(t)

λ2+λ < µ21 always holds for any t ∈ [0, T ], then we
only need to discuss Cases 1, 2, 3 and 5.

Case 1: − a(t)
λ2+λ < µ21 < 0 and 0 < θ ≤ θ2(t) < θ1(t).

In this case, ∆1(t) < 0 and ∆2(t) ≥ 0. If x + Q(t)
P (t) ≤ 0, then η̌ ≥ 0 and q̌ ≤ 0. Because of the

restriction of π∗ ∈ Π, we have to choose q∗ = 0. Inserting q∗ into (12) with ∂f(η,0)
∂η = 0, we obtain

η̃ = − a(t) + (λ2 + λ)µ21

σ2(t) + (λ2 + λ)µ22

(
x +

Q(t)
P (t)

)
≥ 0,

then we get η∗ = η̃. Thus, the minimizer of the f(η, q) is π∗ = (η∗, q∗) = (η̃, 0). Plugging π∗ = (η̃, 0)
back into (12) and separating the variables with and without x lead to the following systems of
ODEs: 




1
2Pt + M1(t)P (t) + r(t)P (t) = 0,

Qt + 2M1(t)Q(t) + r(t)Q(t) + (c(t)− (1 + θ)a1)P (t) = 0,

Lt + (c(t)− (1 + θ)a1)Q(t) + M1(t)
Q2(t)
P (t) = 0,

with the bound conditions P (T ) = 1, Q(T ) = 0, L(T ) = 0, where

M1(t) = −1
2
· (a(t) + (λ2 + λ)µ21)2

σ2(t) + (λ2 + λ)µ22
.
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Then we have




P (t) = e
∫ T

t
2(M1(t)+r(s))ds,

Q(t) = e
∫ T

t
(2M1(t)+r(s))ds ×

∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds,

L(t) =
∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
(2M1(v)+r(v))dv

∫ T

s

(c(z)− (1 + θ)a1)e
∫ T

z
r(v)dvdzds

+
∫ T

t

M1(s)e
∫ T

s
M1(v)dv

[∫ T

s

(c(z)− (1 + θ)a1)e
∫ T

z
r(v)dvdz

]2

ds.

Note that

x +
Q(t)
P (t)

= x + e−
∫ T

t
r(s)ds

∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds,

then we have




η∗(t, x) = − a(t)+(λ2+λ)µ21
σ2(t)+(λ2+λ)µ22

·
[
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
]
,

q∗(t, x) = 0.

Substituting the solutions into (11), and rearranging, we obtain

V (t, x) =
1
2
e
∫ T

t
2M1(s)ds

{
xe

∫ T
t

r(s)ds +
∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds

}2

.

If x + Q(t)
P (t) > 0, then η̌ < 0 and q̌ ≥ 0. For the restriction of π∗ ∈ Π, we choose η∗ = 0, by the

same manner as above, we get

q̃ = − θa1

(λ1 + λ)µ12
(x +

Q(t)
P (t)

) < 0.

Therefore, the minimizer of f(η, q) is π∗ = (η∗, q∗) = (0, 0), and thus we get

V (t, x) =
1
2

{
xe

∫ T
t

r(s)ds +
∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds

}2

.

Along the same lines, we can derive the minimizers and solutions of equation (11) for the other four
cases as follows:

Case 2: − a(t)
λ2+λ < µ21 < 0 and 0 < θ2(t) < θ ≤ θ1(t).

The minimum of the left-hand side of the equation (10) is attained at

12



π∗(t) =





(η̄(t, x), q̄(t, x)), if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(0, 0), if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

and the solution of equation (10) is

V (t, x) =





1
2e

∫ T
t

2M2(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t

r(s)ds +
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

where 



η̄(t, x) = ∆1(t)
{

x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}

,

q̄(t, x) = ∆2(t)
{

x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}

,
(16)

and

M2(t) = −1
2
· m2(λ1 + λ)µ12 + 2mθa1λµ11µ21 + θ2a2

1(σ
2(t) + (λ2 + λ)µ22)

(σ2(t) + (λ2 + λ)µ22)(λ1 + λ)µ12 − λ2µ2
11µ

2
21

,

with m = a(t) + (λ2 + λ)µ21. It is not difficult to see that M2(t) < 0 for any t ∈ [0, T ] when
− a(t)

λ2+λ < µ21 < 0 and 0 < θ2(t) < θ ≤ θ1(t).

Case 3: − a(t)
λ2+λ < µ21 < 0, 0 < θ2(t) < θ1(t) < θ.

The minimum of the left-hand side of the equation (10) is attained at

π∗(t) =





(
0, − θa1

(λ1+λ)µ12

{
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
})

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(0, 0),

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,
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and the solution of equation (10) is

V (t, x) =





1
2e

∫ T
t

2M3(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t

r(s)ds +
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

where M3(t) = − 1
2

θ2a2
1

(λ1+λ)µ12
.

Case 4: −1 < µ21 ≤ − a(t)
λ2+λ , θ > 0.

The minimum of the left-hand side of the equation (10) is attained at

π∗(t) =





(
0, − θa1

(λ1+λ)µ12

{
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
})

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(
− a(t)+(λ2+λ)µ21

σ2(t)+(λ2+λ)µ22
·
{

x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}

, 0
)

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

and the solution of equation (10) is

V (t, x) =





1
2e

∫ T
t

2M3(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

1
2e

∫ T
t

2M1(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0.

Case 5: µ21 ≥ 0, θ > 0.
The results in this case is exactly the same as in Case 2.

To summarize, we have

Theorem 3.1. Let ∆1(t) and ∆2(t) be given as in (15), η̄(t, x) and q̄(t, x) be given as in (16). For
any t ∈ [0, T ], we have
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i) when − a(t)
λ2+λ < µ21 < 0, the minimizer of the left-hand side of the equation (12) is attained

at

π∗(t) =





(η∗1 , q∗1), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(0, 0), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

(17)

where

(η∗1 , q∗1) =





(
− a(t)+(λ2+λ)µ21

σ2(t)+(λ2+λ)µ22
·
{

x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}

, 0
)

, 0 < θ ≤ θ2(t) < θ1(t),

(η̄(t, x), q̄(t, x)), 0 < θ2(t) < θ ≤ θ1(t),(
0, − θa1

(λ1+λ)µ12

{
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
})

, 0 < θ2(t) < θ1(t) < θ.

Moreover, the solution of the HJB-equation (10) is given by

V (t, x) =





V1(t, x), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

V2(t, x), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

(18)

where

V1(t, x) =





1
2e

∫ T
t

2M1(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

, 0 < θ ≤ θ2(t) < θ1(t),

1
2e

∫ T
t

2M2(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

, 0 < θ2(t) < θ ≤ θ1(t),

1
2e

∫ T
t

2M3(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

, 0 < θ2(t) < θ1(t) < θ,

and

V2(t, x) =
1
2

{
xe

∫ T
t

r(s)ds +
∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds

}2

;

ii) when −1 < µ21 ≤ − a(t)
λ2+λ , the minimizer of the left-hand side of the equation (12) is attained

at

π∗(t) =





(
0, − θa1

(λ1+λ)µ12

{
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
})

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(
− a(t)+(λ2+λ)µ21

σ2(t)+(λ2+λ)µ22

{
x + e−

∫ T
t

r(s)ds
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}

, 0
)

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

(19)
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and the solution of the HJB-equation (10) is given by

V (t, x) =





1
2e

∫ T
t

2M3(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

1
2e

∫ T
t

2M1(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0;

(20)

iii) When µ21 ≥ 0, the minimizer of the left-hand side of the equation (12) is attained at

π∗(t) =





(η̄(t, x), q̄(t, x)), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

(0, 0), x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0,

(21)

and the solution of the HJB-equation (10) is given by

V (t, x) =





1
2e

∫ T
t

2M2(s)ds
{

xe
∫ T

t
r(s)ds +

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds ≤ 0,

1
2

{
xe

∫ T
t

r(s)ds +
∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds
}2

,

if x + e−
∫ T

t
r(s)ds

∫ T

t
(c(s)− (1 + θ)a1)e

∫ T
s

r(z)dzds > 0.

(22)

Now we define regions Γ1, Γ2, and Γ3 in the (t, x) plane as

Γ1 :=

{
(t, x) ∈ [0, T ]× R∣∣x + e−

∫ T
t

r(s)ds

∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds < 0

}
,

Γ2 :=

{
(t, x) ∈ [0, T ]× R∣∣x + e−

∫ T
t

r(s)ds

∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds > 0

}
,

Γ3 :=

{
(t, x) ∈ [0, T ]× R

∣∣x + e−
∫ T

t
r(s)ds

∫ T

t

(c(s)− (1 + θ)a1)e
∫ T

s
r(z)dzds = 0

}
.

Some simple calculations show that in Γ1 and Γ2, V (t, x) is sufficiently smooth for the derivatives
in (10). The non-smoothness of V (t, x) occurs in the switching curve Γ3.

Explicitly, in Γ1 and Γ2, V (t, x) = 1
2P (t)x2 + Q(t)x + L(t) is sufficiently smooth for the terms in
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(10) with

Vt(t, x) =
1
2
Pt(t)x2 + Qt(t)x + Lt(t),

Vx(t, x) = P (t)x + Q(t),

Vxx(t, x) = P (t).

While the switching curve Γ3 is where the non-smoothness of V (t, x) occurs. On Γ3,

V (t, x) =
1
2
P (t)x2 + Q(t)x + L(t) = 0,

so V (t, x) is continuous at points on Γ3. In addition, we also easily obtain




Vt(t, x) =
1
2
Pt(t)x2 + Qt(t)x + Lt(t) = 0,

Vx(t, x) = P (t)x + Q(t) = 0.

That is, V (t, x) is also continuous differentiable at the point on Γ3. However, Vxx(t, x) does not exist
on Γ3, since the values of P (t) in Γ1 and Γ2 are different (it is not difficult to see from the results
in Theorem 3.1). This means that V (t, x) does not possess the necessary smoothness properties to
qualify as a classical solution of the HJB equation (10). For this reason, we are required to work
within the framework of viscosity solutions.

By Definition 3.1, it is not difficult to prove that V (t, x) given in Theorem 3.1 is a viscosity
solution of the HJB equation (10). Then the verification theorem within the framework of the
viscosity solution is given as follows:

Theorem 3.2. Let ∆1(t) and ∆2(t) be given as in (16), R̂∗(s) := R̂π∗(s) and c1(s) := c(s)−(1+θ)a1.
If the initial reserve x satisfies

x + e−
∫ T

t
r(s)ds

∫ T

t

c1(s)e
∫ T

s
r(z)dzds > 0

for the initial time t, the optimal investment and reinsurance strategy of problem (9) at any s ∈ [t, T ]
is given by

i) When −1 < µ21 ≤ − a(t)
λ2+λ ,

π∗(s) =





(
− a(s)+(λ2+λ)µ21

σ2(s)+(λ2+λ)µ22

{
R̂∗(s−) + e−

∫ T
s

r(z)dz
∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0
)

, t ≤ s < T ∧ τ1,

(
0, − θa1

(λ1+λ)µ12

{
R̂∗(s−) + e−

∫ T
s

r(z)dz
∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
})

, T ∧ τ1 ≤ s < T ∧ τ2,

where

τ1 := inf

{
s > t : R̂∗(s) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv ≤ 0

}
,
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and

τ2 := inf

{
s > τ1 : R̂∗(s) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv > 0

}
.

For the optimal strategy at s ∈ [T ∧ τ2, T ], we give the explanation in the following Remark 3.2;

ii) When − a(t)
λ2+λ < µ21 < 0 or µ21 ≥ 0,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))) = (0, 0).

If the initial reserve x satisfies

x + e−
∫ T

t
r(s)ds

∫ T

t

c1(s)e
∫ T

s
r(z)dzds ≤ 0,

for the initial time t, the optimal investment and reinsurance strategy of problem (9) at any s ∈ [t, T ]
is given as follows.

i) When −1 < µ21 ≤ − a(t)
λ2+λ ,

π∗(s) =





(
0, − θa1

(λ1+λ)µ12

{
R̂∗(s−) + e−

∫ T
s

r(z)dz
∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
})

, t ≤ s < T ∧ τ3,

(
− a(s)+(λ2+λ)µ21

σ2(s)+(λ2+λ)µ22

{
R̂∗(s−) + e−

∫ T
s

r(z)dz
∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0
)

, T ∧ τ3 ≤ s < T ∧ τ4;

where

τ3 := inf

{
s > t : R̂∗(s) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv > 0

}
,

and

τ4 := inf

{
s > τ3 : R̂∗(s) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv ≤ 0

}
.

Again, for the optimal strategy at s ∈ [T ∧ τ4, T ], please see the explanation in the following Remark
3.2;

ii) When − a(t)
λ2+λ < µ21 < 0,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))),

where

η∗(s, R̂∗(s)) =





− a(s)+(λ2+λ)µ21
σ2(s)+(λ2+λ)µ22

·
{

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0 < θ ≤ θ2(t) < θ1(t),

∆1(s)
{

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0 < θ2(t) < θ ≤ θ1(t),

0, 0 < θ2(t) < θ1(t) < θ,
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and

q∗(s, R̂∗(s)) =





0, 0 < θ ≤ θ2(t) < θ1(t),

∆2(s)
{

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0 < θ2(t) < θ ≤ θ1(t),

− θa1
(λ1+λ)µ12

{
R̂∗(s−) + e−

∫ T
s

r(z)dz
∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, 0 < θ2(t) < θ1(t) < θ

for any t ≤ s < T ∧ τ3, and

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))) = (0, 0)

for any T ∧ τ3 ≤ s < T ;

iii) When µ21 ≥ 0 ,

π∗(s) = (η∗(s, R̂∗(s)), q∗(s, R̂∗(s))),

where

η∗(s, R̂∗(s)) =





∆1(s)
{

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, t ≤ s < T ∧ τ3,

0, T ∧ τ3 ≤ s < T ,

and

q∗(s, R̂∗(s)) =





∆2(s)
{

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s
c1(v)e

∫ T
v

r(z)dzdv
}

, t ≤ s < T ∧ τ3,

0, T ∧ τ3 ≤ s < T .

Furthermore, the value function J(t, x) satisfies J(t, x) = V (t, x), where V (t, x) is the same as
shown in Theorem 3.1.

Along the same lines as in Section 4 of Bi and Guo (2013), we can prove the verification theorem.
Therefore, we omit it here.

Remark 3.2. For the optimal strategies in the case of −1 < µ21 ≤ − a(t)
λ2+λ , we only give two parts

for the period of [t, T ]. Actually, there are possibly more than two parts in this case. For example,
during the period of [τ2 ∧ T, T ], the value of

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv

maybe reach to the negative value, then return back to the positive value, and then back to negative
value again, and so on. Therefore, we have to make the choice of optimal strategies based on the
value of

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv.
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That is, when

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv ≤ 0,

the optimal strategies are

π∗(s) =

(
0, − θa1

(λ1 + λ)µ12

{
R̂∗(s−) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv

})
;

when

R̂∗(s−) + e−
∫ T

s
r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv > 0,

the optimal strategies are

π∗(s) =

(
− a(s) + (λ2 + λ)µ21

σ2(s) + (λ2 + λ)µ22

{
R̂∗(s−) + e−

∫ T
s

r(z)dz

∫ T

s

c1(v)e
∫ T

v
r(z)dzdv

}
, 0

)
.

4 The efficient strategy and efficient frontier

In this section, we apply the results in Section 3 to solve the mean-variance problem, and derive the
efficient strategy and efficient frontier of problem (4). Here we only give the detail analysis for the
case of − a(t)

λ2+λ < µ21 < 0.
Since we have set R̂(t) = R(t)− (k− β), then R(t) = R̂(t) + (k− β) and R(0) = R̂(0) + (k− β).

Besides, c(t) = c + (k − β)r(t) in (8). We can get

E[
1
2
(R̂(T )))2] =

1
2
E[(R(T )− k)2 + 2β(ER(T )− k) + β2].

Therefore, for every fixed β, we have

min
π∈Π

E[(R(T )− k)2 + 2β(ER(T )− k)]

=





{
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds− (k − β)

}2

− β2,

if R0 − (k − β)e−
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds > 0,

2V1(0, R0)− β2,

if R0 − (k − β)e−
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds ≤ 0,

(23)

where

2V1(0, R0)− β2

=





e
∫ T
0 2M1(s)ds

{
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds− (k − β)

}2

− β2, 0 < θ ≤ θ2(t) < θ1(t),

e
∫ T
0 2M2(s)ds

{
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds− (k − β)

}2

− β2, 0 < θ2(t) < θ ≤ θ1(t),

e
∫ T
0 2M3(s)ds

{
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

s
r(z)dzds− (k − β)

}2

− β2, 0 < θ2(t) < θ1(t) < θ.
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Note that the above value still depends on the Lagrange multiplier β, we denote it by W (β).
To obtain the minimum VarR(T ) and the optimal strategy for the original control problem (4),
it is sufficient to maximize the value in (23) over β ∈ R by the Lagrange duality theorem. Some
calculations show that W (β) attains its maximum value

W (β∗) =





[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2

e−
∫ T
0 2M1(s)ds−1

, 0 < θ ≤ θ2(t) < θ1(t),
[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2

e−
∫ T
0 2M2(s)ds−1

, 0 < θ2(t) < θ ≤ θ1(t),
[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

]2

e−
∫ T
0 2M3(s)ds−1

, 0 < θ2(t) < θ1(t) < θ,

at

β∗ =





R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e−
∫ T
0 2M1(s)ds−1

, 0 < θ ≤ θ2(t) < θ1(t),

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e−
∫ T
0 2M2(s)ds−1

, 0 < θ2(t) < θ ≤ θ1(t),

R0e
∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−k

e−
∫ T
0 2M3(s)ds−1

, 0 < θ2(t) < θ1(t) < θ,

which leads to the following Theorem:

Theorem 4.1. When − a(t)
λ2+λ < µ21 < 0, the efficient frontier for problem (4) with expected terminal

wealth ER(T ) = k is determined by

VarR(T ) =





[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−ER(T )

]2

e−
∫ T
0 2M1(s)ds−1

, 0 < θ ≤ θ2(t) < θ1(t),
[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−ER(T )

]2

e−
∫ T
0 2M2(s)ds−1

, 0 < θ2(t) < θ ≤ θ1(t),
[
R0e

∫ T
0 r(s)ds+(c−(1+θ)a1)

∫ T
0 e

∫ T
v r(s)dsdv−ER(T )

]2

e−
∫ T
0 2M3(s)ds−1

, 0 < θ2(t) < θ1(t) < θ,

where

ER(T ) ≥ R0e
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds.
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Moreover, the efficient strategy is given by

π∗(t, R(t)) = (η∗(t, R(t)), q∗(t, R(t))) =





(η̃∗(t, R(t)), 0), 0 < θ ≤ θ2(t) < θ1(t),

(η̂∗(t, R(t)), q̂∗(t, R(t))), 0 < θ2(t) < θ ≤ θ1(t),

(0, q̃∗(t, R(t))), 0 < θ2(t) < θ1(t) < θ,

for any 0 ≤ t < T ∧ τ̂π∗ ; and

π∗(t, R(t)) = (η∗(t, R(t)), q∗(t, R(t))) = (0, 0)

for any T ∧ τ̂π∗ ≤ t < T . Where




η̃∗(t, R(t)) = − a(t)+(λ2+λ)µ21
σ2(t)+(λ2+λ)µ22

· R(t−)−ke−
∫ T
t r(s)ds+

∫ T
t

(c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e−
∫ T
t 2M1(s)ds

,

q̃∗(t, R(t)) = − θa1
(λ1+λ)µ12

R(t−)−ke−
∫ T
t r(s)ds+

∫ T
t

(c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e−
∫ T
t 2M3(s)ds

,

η̂∗(t, R(t)) = ∆1(t)
R(t−)−ke−

∫ T
t r(s)ds+

∫ T
t

(c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e−
∫ T
t 2M2(s)ds

,

q̂∗(t, R(t)) = ∆2(t)
R(t−)−ke−

∫ T
t r(s)ds+

∫ T
t

(c−(1+θ)a1)e
− ∫ v

t r(z)dzdv

1−e−
∫ T
t 2M2(s)ds

,

(24)

and

τ̂π∗ := inf

{
s > t : R∗(s)− ke−

∫ T
s

r(z)dz +
∫ T

s

(c− (1 + θ)a1)e−
∫ v

s
r(z)dzdv < 0

}
.

Along the same lines, we can directly get the efficient frontier and efficient strategy for the other
two cases as follows:

Theorem 4.2. i) When −1 < µ21 ≤ − a(t)
λ2+λ , for any θ > 0, the efficient frontier for problem (4)

with expected terminal wealth ER(T ) = k is given by

VarR(T ) =

[
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

v
r(s)dsdv − ER(T )

]2

e−
∫ T
0 2M3(s)ds − 1

,

where

ER(T ) ≥ R0e
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds.

Moreover, the efficient strategy is

π∗(t, R(t)) =





(0, q̃∗(t, R(t))) , 0 ≤ t < T ∧ τ̂π∗ ,

(η̃∗(t, R(t)), 0) , T ∧ τ̂π∗ ≤ t < T ∧ τ̃π∗ ,

22



where

τ̃π∗ := inf

{
s > τ̂π∗ : R∗(s)− ke−

∫ T
s

r(z)dz +
∫ T

s

(c− (1 + θ)a1)e−
∫ v

s
r(z)dzdv ≥ 0

}
.

For the efficient strategy in interval [T ∧ τ̃π∗ , T ], we can have the same analysis as mentioned in
Remark 3.2.

ii) When µ21 ≥ 0, for any θ > 0, the efficient frontier for problem (4) with expected terminal
wealth ER(T ) = k is given by

VarR(T ) =

[
R0e

∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0
e
∫ T

v
r(s)dsdv − ER(T )

]2

e−
∫ T
0 2M2(s)ds − 1

,

where

ER(T ) ≥ R0e
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds.

Moreover, the efficient strategy is

π∗(t, R(t)) = (η̂∗(t, R(t)), q̂∗(t, R(t))),

where (η̂∗(t, R(t)) are given in (24).

Remark 4.1. Note that the inequality

R0 − (k − β∗)e−
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds ≤ 0

is equivalent to

R0 − ke−
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds ≤ 0,

which can be rewritten as

k ≥ R0e
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

s
r(z)dzds.

This is the natural consequence which means that the investor expects higher terminal wealth k by
investing in the stock market than the terminal wealth

R0e
∫ T
0 r(s)ds + (c− (1 + θ)a1)

∫ T

0

e
∫ T

v
r(s)dsdv

by only investing in the bond market and q(t) = 0. It also implies that the investor has to take risk
to meet his/her investment target.

Remark 4.2. In this paper, when we assume that the two jump number processes {K1(t)}t≥0 and
{K2(t)}t≥0 are independent, i.e., the parameter λ = 0, and when we assume that µ21 are always
nonnegative, we can get the same results as in Bi and Guo (2013).
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5 Numerical examples

In this section, we give a numerical example to illustrate our results. To investigate the impact
of parameters λ and λ1 on the efficient frontier, we assume that the insurer’s premium rate c is also
calculated by expected value premium principle. That is, c = (1 + θ̃1)a1, where θ̃1 is the safety
loading of insurer.

Example 5.1. In this example, we set R0 = 10, T = 1, r(t) ≡ 0.04, a(t) ≡ 0.01, σ(t) ≡ 0.03,
θ̃1 = 0.2, θ = 0.8, µ11 = 0.01, µ12 = 0.002, µ21 = 0.005, µ22 = 0.0015. The results are shown in
Figures 1∼3.
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Figure 1 Efficient-Frontier of problem (4) for different λ

From Figure 1 with λ = 0, 8, 15, λ1 = 3, and λ2 = 1, we can see that if Var[R(T )] is small
enough, the smaller λ the larger ER(T ) with the same Var[R(T )]. If Var[R(T )] is larger than some
value, the reverse is true. This same property is shown in Figure 2 with λ = 5, λ1 = 1, 5, 10, and
λ2 = 1. From Figure 3 with λ = 5, λ1 = 3, and λ2 = 1, 5, 10, we conclude that the bigger λ2 the
bigger ER(T ) with the same Var[R(T )], and this phenomenon is not obvious when Var[R(T )] is
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Figure 2 Efficient-Frontier of problem (4) for different λ1
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Figure 3 Efficient-Frontier of problem (4) for different λ2
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small enough. This is the natural consequence since µ21 > 0 means that the expected value of the
jump size for the risky asset is positive, and thus the larger frequency (say, λ2) of this kind of jump,
the larger expected return.

Example 5.2. In this example, we set R0 = 10, T = 1, r(t) ≡ 0.04, a(t) ≡ 0.01, σ(t) ≡ 0.03,
θ̃1 = 0.2, µ11 = 0.01, µ12 = 0.002, µ22 = 0.0015, λ2 = 1, λ1 = 3, λ = 5. The results are shown in
Figures 4 and 5.

From Figure 4 with µ21 = 0.005 and θ = 0.2, 0.5, 0.8, we can see that if Var[R(T )] is small
enough, the smaller θ the larger ER(T ) with the same Var[R(T )]. If Var[R(T )] is larger than some
value, the reverse is true. From Figure 5 with θ = 0.8 and µ21 = 0.005, 0.01, 0.015, we conclude
that the bigger µ21 the bigger ER(T ) with the same Var[R(T )], and this phenomenon is not obvious
when Var[R(T )] is small enough. This is the natural consequence since µ21 > 0 means the expected
value of the jump size for the risky asset is positive, and thus the larger µ21 the larger expected
return.
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Figure 4 Efficient-Frontier of problem (4) for different θ
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Figure 5 Efficient-Frontier of problem (4) for different µ21
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6 Conclusions

We first recap the main results of the paper. We consider mean-variance optimal problem for an
insurer with investment and reinsurance in a jump-diffusion financial market where the aggregate
claim process and the risky asset process are correlated by a common shock. Furthermore, we
assume that the expected value of the jump size in the risky asset is not necessary nonnegative,
therefore, we have to discuss the optimization problem on the five different cases because of the
constraints on the investment and reinsurance control variables. Under the mean-variance criterion,
using the technique of stochastic control theory and the corresponding Hamilton-Jacobi-Bellman
equation, within a framework of viscosity solution, we derive the explicit expressions of the optimal
strategies and the value function. Besides, we extend the optimal results to the original mean-
variance optimization problem, and obtain the solutions of efficient frontier and efficient strategies
explicitly.

For the future research, there are several interesting problems that deserve investigation. Firstly,
we can extend the financial asset model to the one with Markov regime switching, such as the
interest rate r(t), the appreciation rate b(t) and the volatility coefficient σ(t) of the stock in our
model can be changed from deterministic functions to a general stochastic processes with Markov
regime switching; Secondly, we can consider portfolio problem with some constraints, such as the
value of the dynamic wealth would be no less than a pre-given level c, or with no-bankruptcy
constraint; Thirdly, transaction costs can also be considered in this optimization problem. Even
though these kind of problems are challenging problems, they are meaningful and more realistic to
be discussed, and they are also our future research work directions.

Acknowledgments

Zhibin Liang and Caibin Zhang are supported by National Natural Science Foundation of China
(Grant No. 11471165) and Jiangsu Natural Science Foundation (Grant No. BK20141442). Junna
Bi is supported by National Natural Science Foundation of China (Grant No. 11301188), Specialized
Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20130076120008),
and Shanghai Natural Science Foundation of China (Grant No. 13ZR1453600). Kam Chuen Yuen
is supported by a grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. HKU 7057/13P), and the CAE 2013 research grant from the Society
of Actuaries - any opinions, finding, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the SOA.

29



References
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2. Bäuerle, N., 2005. Benchmark and mean-variance problems for insurers. Mathematical Methods
of Operations Research. 62, 159-165.

3. Bi, J., Guo, J., 2013. Optimal mean-variance problem with constrained controls in a jump-
diffusion financial market for an insurer. Journal of Optimization Theory and Applications.
157, 252-275.

4. Fleming, W. H., Soner, H. M., 1993. Controlled Markov Processes and Viscosity Solutions.
Springer-Verlag, Berlin, New York.

5. Irgens, C., Paulsen, J., 2004. Optimal control of risk exposure, reinsurance and investments for
insurance portfolios. Insurance: Mathematics and Economics. 35, 21-51.

6. Li, D., Ng, W. L., 2000. Optimal dynamic portfolio selection: multi-period mean-variance
formulation. Mathematical Finance. 10, 387-406.

7. Liang, Z., Bayraktar, E., 2014. Optimal proportional reinsurance and investment with unob-
servable claim size and intensity. Insurance: Mathematics and Economics. 55, 156-166.

8. Liang, Z., Yuen, K. C., Guo, J., 2011. Optimal proportional reinsurance and investment in a
stock market with Ornstein-Uhlenbeck process. Insuarnce: Mathematics and Economics. 49,
207-215.

9. Luenberger, D. G., 1968. Optimization by Vector Space Methods. Wiley, New York.

10. Markowitz, H., 1952. Portfolio selection. Journal of Finance. 7, 77-91.

11. Ming, Z., Liang, Z., 2014. Optimal mean-variance reinsurance with dependent risks. ANZIAM
Journal. Submitted.

12. Promislow, D., Young, V., 2005. Minimizing the probability of ruin when claims follow Brownian
motion with drift. North American Actuarial Journal. 9(3), 109-128.

13. Schmidli, H., 2001. Optimal proportional reinsurance policies in a dynamic setting. Scandinavian
Actuarial Journal. 1, 55-68.

14. Zhou, X., Li, D., 2000. Continuous-time mean-variance portfolio selection: a stochastic LQ
framework. Applied Mathematics and Optimization. 42, 19-33.

30


